Electrical impedance tomography reconstruction for three-dimensional imaging of the prostate.
نویسندگان
چکیده
Transrectal electrical impedance tomography (TREIT) has been proposed as an adjunct modality for enhancing standard clinical ultrasound (US) imaging of the prostate. The proposed TREIT probe has an array of electrodes adhered to the surface of a cylindrical US probe that is introduced inside of the imaging volume. Reconstructing TREIT images in the open-domain geometry established with this technique poses additional challenges to those encountered with closed-domain geometries, present in more conventional EIT systems, because of the rapidly decaying current densities at increasing distances from the probe surface. We developed a finite element method (FEM)-based dual-mesh reconstruction algorithm which employs an interpolation scheme for linking a fine forward mesh with a coarse grid of pixels, used for conductivity estimation. Simulation studies using the developed algorithm demonstrate the feasibility of imaging moderately contrasting inclusions at distances of three times the probe radius from the probe surface and at multiple angles about the probe's axis. The large, dense FEM meshes used here require significant computational effort. We have optimized our reconstruction algorithm with multi-core processing hardware and efficient parallelized computational software packages to achieve a speedup of 9.3 times when compared to a more traditional Matlab-based, single CPU solution. The simulation findings and computational optimization provide a state-of-the-art reconstruction platform for use in further evaluating transrectal electrical impedance tomography.
منابع مشابه
Applications of Electrical Impedance Tomography in Neurology
Introduction: Electrical impedance tomography (EIT) is a non-invasive technique utilized in various medical applications, including brain imaging and other neurological diseases. Recognizing the physiological and anatomical characteristics of organs based on their electrical properties is one of the main applications of EIT, as each variety of tissue structure has its own electrical characteris...
متن کاملElectrical Impedance Imaging Using Eddy Current
Electric impedance imaging is a method of reconstructing spatial distribution of electrical conductivity inside a subject. In this paper, a new method of electrical impedance imaging using eddy current is proposed. The eddy current distribution in the body depends on the conductivity distribution and the magnetic field pattern. By changing the position of magnetic core, a set of voltage differe...
متن کاملArtifact reduction techniques in Cone Beam Computed Tomography (CBCT) imaging modality
Introduction: Cone beam computed tomography (CBCT) was introduced and became more common based on its low cost, fast image procedure rate and low radiation dose compared to CT. This imaging modality improved diagnostic and treatment-planning procedures by providing three-dimensional information with greatly reduced level of radiation dose compared to 2D dental imaging modalitie...
متن کاملElectrical Impedance Tomography (EIT) and Its Medical Applications: A Review
This paper reviews the principles of Electrical Impedance Tomography (EIT), different types of current patterns and reconstruction algorithms to assess its potential in medical imaging. A current injection pattern in EIT has its own current distribution profile within the subject under test. Hence, different current patterns have different sensitivity, spatial resolution and distinguishability....
متن کاملA uniqueness result and image reconstruction of the orthotropic conductivity in magnetic resonance electrical impedance tomography
The Magnetic resonance electrical impedance tomography (MREIT) is a new medical imaging method combining electrical impedance tomography (EIT) and current injection MRI technique. In this paper, we show the uniqueness in MREIT problem with an orthotropic conductivity under the hypothesis that the ratios of conductivities are known. Based on an effective numerical differentiation method and an a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological measurement
دوره 31 8 شماره
صفحات -
تاریخ انتشار 2010